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Abstract

Recent implementations of laboratory ultracold atom-ion systems have opened up a
variety of promising research directions. These systems allow for studying atom-ion
collisions in the ultracold (quantum) regime, as well as cold chemistry and may find
applications in quantum computing. Precisely controlled ions could be used to explore
the physics of impurities in (one-dimensional) Bose-Einstein condensates or to perform
in situ measurements of ultracold atomic quantum gases. Hybrid atom-ion systems may
also be applicable for sympathetic ground state cooling of trapped ions with ultracold
atoms or vice versa.

Since the long range atom-ion interaction is much stronger than typical atom-atom
interactions, single trapped ions may be used to control the dynamics of atomic systems.
In this thesis - as an example of such a system - an atomic Josephson junction that is
controlled by a single ion is investigated theoretically. By placing an ion between an
atomic double well system the tunnelling rate can be controlled by the spin of the ion.
Here, also many-body phenomena such as self-trapping may be observed.

This thesis I shows a result obtained in a previous work revealing that in theory the
tunnelling rate can not only be controlled by the spin of the ion but also by its motion.
In analysing this problem, I supply a more realistic model that can be tested in future
experiments. In particular I investigated the effects of imperfect ion cooling on the
tunnelling dynamics.

I built an experimental setup that is developed around a specially designed atom-ion
micro trap combining the technologies of planar ion traps and atom chips. This hybrid
trap, which is meant to trap 87Rb atoms and 171Yb+ ions, is part of an octagonal
chip, coated with multiple conductive layers featuring the magnetic U and Z shape
trap for atoms and the surface electrodes for a planar linear trap for ions. It has an
outside diameter of 45mm and a total height of 1mm. With this design we expect
trapping frequencies of ν > 1.0 kHz for the atoms and frequencies over 1MHz for the
linear ion crystal. Compared to common hybrid traps my trap design is an obvious
infrastructural simplification and it provides increased trapping stability. For realising
atomic Josephson junctions this setup will enable us to form double well potentials by
radio frequency induced adiabatic dressing. Due to the small size of the trap design we
realise tight confinement of the ions and atoms. This will allow us to form wave packets
of the size of the atom-ion interaction range and to reach the one-dimensional regime.
With this setup we will also be able to study many-body phenomena like ion-perturbed
quantum gases and ion-enabled entanglement.

To perform these experiments several frequency stabilized lasers are required. As part
of this thesis a master-slave laser setup is constructed. The low-power master laser
(λ = 780 nm, Pmax = 90mW) is a self-built grating stabilized diode laser that is locked
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to an atomic transition via frequency modulation spectroscopy in a Rubidium vapour
cell. I achieved major improvement in output power by realizing master-slave injection
locking of a free running high-power slave laser (λ = 780 nm, Pmax = 300mW) to the
stabilized frequency of the master laser.

The key goals for the near future is an implementation of this experiment by completing
and assembling the setup and a realization of 87Rb Bose-Einstein condensation as well
as ground state cooling of trapped 171Yb+ ions. A future development will be the
optimization of the trap design by reducing the number of layers.
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Zusammenfassung

In jüngster Zeit hat die erfolgreiche Realisierung von ultrakalten Atom-Ionen Systemen
einige vielversprechende Forschungsrichtungen eröffnet. Die Systeme erlauben das Er-
forschen von Atom-Ionen Kollisionen im Quantenregime und möglicherweise werden sie
auch Anwendung in der Quanteninformationstechnologie finden. Präzise kontrollierte
Ionen könnten dazu benutzt werden, das Verhalten von Ionen als Verunreinigungen in
(eindimensionalen) Bose-Einstein Kondensaten zu erforschen oder lokale Messungen in
ultrakalten atomaren Quantengasen durchzuführen. Hybride Atom-Ionen Systeme kön-
nten außerdem für sympathetisches Grundzustandskühlen von gefangenen Ionen und
ultrakalten Atomen mit der jeweils anderen Spezies genutzt werden.

Da die langreichweitige Atom-Ionen Wechselwirkung viel stärker ist als typische Atom-
Atom Wechselwirkungen, könnten gefangene Ionen dazu benutzt werden, das Verhalten
von atomaren Systemen zu steuern. Als Beispiel wird in der vorliegenden Arbeit ein
atomarer Josephson-Kontakt, welcher durch ein einziges Ion gesteuert wird, theoretisch
erforscht. Platziert man ein Ion zwischen eine atomare Doppelmulde, kann die Tun-
nelrate durch den Spin des Ions kontrolliert werden. Hier sind möglicherweise auch
Vielkörper-Phänomene wie zum Beispiel das self-trapping zu beobachten.

In dieser Arbeit zeige ich theoretisch, dass die Tunnelrate nicht nur durch den Spin
des Ions sondern auch durch dessen Bewegung kontrolliert werden kann. Bei der Anal-
yse dieses Problems baue ich auf vorherigen Arbeiten auf und entwickele daraus ein
realistischeres Model, welches in zukünftigen Experimenten überprüft werden kann.
Insbesondere werden die Auswirkungen auf die Tunneldynamik bei unvollkommener
Ionenkühlung untersucht.

Darüber hinaus habe ich einen Versuch rund um eine speziell entwickelte Atom-Ionen
Mikrofalle entworfen und deren Aufbau begonnen. Diese Falle, die zum gemeinsamen
Fangen von 87Rb Atomen und 171Yb+ Ionen konzipiert ist, kombiniert die Technolo-
gien von planaren Ionenfallen und Atomchips. Sie ist Teil eines oktogonalen Chips mit
einem Außendurchmesser von 45mm und einer Gesamthöhe von 1mm, der mit mehreren
Leiterebenen beschichtet ist. Diese Leiter sind zum einen U und Z geformt für die mag-
netische Atomfalle und zum anderen gibt es Oberflächen-Elektroden für eine planare
lineare Ionenfalle. Mit diesem Design erwarten wir Fallenfrequenzen von ν > 1.0 kHz
für die Atome und Frequenzen von über 1MHz für den linearen Ionenkristall. Ver-
glichen mit üblichen Hybridfallen ist dieses Design baulich grundlegend vereinfacht und
erhöht die Stabilität der Falle. Zur Realisierung von Josephson Kontakten ermöglicht
dieser Aufbau die Erzeugung von Doppelmulden-Potentialen durch Radio-Frequenz in-
duziertes adiabatisches dressing. Auf Grund der kleine geometrischen Abmessungen der
Falle sind die Atome und Ionen stark lokalisiert. So wird das Erzeugen von eindimen-
sionalen Bose-Einstein Kondensaten sowie von Wellenpaketen im Größenbereich der
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Atom-Ionen Wechselwirkung ermöglicht. Außerdem werden wir mit diesem Aufbau
im Stande sein, Vielkörper-Phänomene wie Quantengase mit Fremdionen oder Ionen-
induzierte Verschränkung zu erforschen.

Diese Experimente benötigen einige Frequenz-stabilisierte Laser. Als Teil dieser Arbeit
habe ich einen Master-Slave Laser konstruiert. Bei dem schwachen Master-Laser (λ =
780 nm, Pmax = 90mW) handelt es sich um einen selbstgebauten Gitter-stabilisierten
Diodenlaser, der mittels Frequenzmodulations-Spektroskopie in einer Rubidium-Gaszelle
auf einen atomaren Übergang stabilisiert wird. Durch die Realisierung von Master-Slave
(injection locking) eines freilaufenden Slave-Lasers (λ = 780 nm, Pmax = 300mW) kon-
nte die Ausgangsleistung des Lasers bedeutend verbessert werden.

Hauptziele für die nahe Zukunft sind die Fertigstellung und die endgültige Inbetrieb-
nahme des Experiments, das Erzeugen von 87Rb Bose-Einstein Kondensaten sowie das
Grundzustandskühlen von 171Yb+ Ionen. Daraufhin wird das Fallendesign optimiert.
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1
Introduction

Recently, hybrid systems combining ultracold quantum gases and trapped ions have been
explored theoretically and experimentally [1–7]. The focal points of the exploration
of such systems are in understanding atom-ion collisions in the ultracold (quantum)
regime [8–19], cold chemistry [20, 21] and the effects on quantum gases due to a small
number of ionic impurities [22–25]. On the one hand these experiments aim at studying
many-body systems [26] and on the other hand they are promising for applications
such as in sympathetic cooling of trapped ions with ultracold atoms (or vice versa) and
quantum computing [27–31].

The trapping of both, ions and atoms, is realized with electromagnetic fields. For
example, single ions as well as ion crystals - consisting of an arrangement of ions -
are spatially confined in Paul traps. These traps employ oscillating electric fields for
confining ions. A prominent example of the Paul trap is the linear Paul trap consisting
of four bar-shaped electrodes while a radio frequency (RF) voltage is applied to two
opposing electrodes (fig. 1.1 a)). In this case the oscillating RF quadrupole field confines
the ions in the radial direction and a static electric potential in the axial direction [32].
Neutral atoms can be trapped in optical traps, magnetic traps or in magneto-optical
traps (MOTs) [33].

To date experiments on combined atom-ion systems typically employ conventional traps
such as mm size linear Paul traps for the ions and magnetic/optical traps for the
atoms [3, 7, 21]. In contrast, within the scope of this thesis, a hybrid micro trap is
developed combining planar ion traps [34–38] and atom chip technology [39, 40, 40–43].
Such planar ion traps (fig. 1.1 b)) consist of few electrodes on the surface of a chip
which forms a similar electric quadrupole trapping field as a linear Paul trap. On atom
chips, micro fabricated electromagnets are used to trap atoms magnetically. Combining
these techniques does not only represent a considerable infrastructural simplification in
comparison to conventional traps, it also enables increased scalability since this setup
allows to integrate many traps on one chip. As the ions and the atoms are held by the
same structure, the positioning of them with respect to each other should be affected
much less by temporal drifts and could be performed with an accuracy at the scale of
the quantum wave packet size. Atomic micro traps are also advantageous for studying
one-dimensional quantum gases [44–47] and double-well systems [48–50]. Combining
such systems with trapped ions should enable us to study new many-body phenomena
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2
Dynamics of an ion-controlled Josephson

junction

One of the quantum effects we want to observe in our experiment is quantum tunnelling
in a Josephson junction. The original Josephson junction consists of two superconduc-
tors separated by a thin insulator. In the a.c. Josephson effect a constant voltage is
applied between both superconductors which causes the Cooper pairs - which can be
seen as Bosons - to tunnel through the insulator. Here one can measure an oscillat-
ing current flow. In the d.c. Josephson effect a constant current is applied causing a
constant supercurrent flowing through the insulator [52].

Atomic Josephson junctions are a very active field of research, both theoretically and
experimentally [53–60]. Following [61] a Josephson junction may be realized with ul-
tracold atoms in a double well potential. This potential is precisely controllable and
provides two separated minima representing atomic traps for Bose-Einstein condensates
(BEC). If a BEC is initially localized in one of these wells it can oscillate between them
by quantum tunnelling. This effect can also lead to interesting quantum many-body
phenomena such as self-trapping [62] and entanglement when atomic interactions are
present [63].

Here, we study a new type of Josephson junction where a single ion will be used to
control the tunnelling of ultracold atoms. Two BECs are trapped in a double well
potential and there is a single ion trapped between them that has an internal spin state
that can be tuned with laser light or radio frequency fields (fig. 2.1). As described below,
the potential between the atoms and the ion is attractive at long range but strongly
repulsive at short range. It also depends on the spin orientation (|↑〉,|↓〉) of the ion [17]
such that it should be possible to control the tunnelling rate Ĵ by tuning the internal
state of the ion. The considered setup may allow for better experimental control than
proposals aiming at studying Josephson physics controlled by single trapped atomic
impurities [64,65].

In [51] the dynamics of this ion-controlled atomic Josephson junction have been studied
theoretically under the simplification that the ion is static. In this chapter I improve
on this simplified model by investigating how taking the motion of the ion into account
influences the dynamics. Since the Hilbert space dimension of the problem increases
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2.2. Double well with fixed ion

theory all short-range effects are included in one parameter, the short-range phase φ.
This parameter is related to the atom-ion s-wave scattering length as = −R∗ cot(φ) in
the ultracold regime [10,16,51].

In order to characterise the atom-ion potential it is useful to define the length scale
R∗ =

√

2µC4/~2 and the energy scale E∗ = ~
2/(2µ(R∗)2), where µ = mi ·ma/(mi+ma)

is the reduced mass. A table of characteristic lengths and energies for several atom-ion
pairs and also a table of parameters and coordinates used in this chapter can be found
in appendix A.1. Throughout the chapter we make the secular approximation in which
the time dependence of the Paul trap is replaced by a time independent potential, such
that the ion is assumed to have no micro motion.

2.2. Double well with fixed ion

In this section we illustrate the solution to the ion-controlled double well problem under
the assumption that the ion is static and positioned right between the two wells at
ri = 0. This assumption is motivated by the observation that ions are generally trapped
much tighter than atoms in experiments. The assumption also simplifies the calculation
allowing us to demonstrate the basic principle of such a problem. In the next sections
we show how the picture changes when the ion dynamics are taken into account.

We first consider a system of a single ion and a single atom. The ion is trapped in
the electric field of an ion trap (section 3.3) and the atom is trapped in a double-well
potential (section 3.4.9). For this setup the atomic Hamiltonian is given by:

Ha =
p2a
2ma

+ Vdw(ra)−
C4

r4a
, (2.2)

where pa = −i~ ∂/∂ra is the momentum of the atom, ma is the atomic mass and Vdw(ra)
is the double-well potential. A symmetric double-well potential can be considered as
the overlap of two single-well potentials and is often chosen in this context as [61]:

Vdw(ra) =
b

q4
(
r2a − q2

)2
(2.3)

An arbitrary double-well potential with q = b = 2 is shown in fig. 2.2. This potential
has two minima at ra = ±q and b is the height of the barrier between the two wells at
ra = 0. For each inter-well distance 2q the local trapping frequencies for this potential
ωa =

√

8b/maq2 are fixed by setting b = ω2
amaq

2/8, such that q can be changed without
changing the local trapping frequency. It is also convenient to introduce the dimension-
less parameter αa = (R∗/4la)

4 = (~ωa/2E
∗)2 which compares the length scale R∗ to

the size of the atomic ground state la =
√

~/2maωa.
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2. Dynamics of an ion-controlled Josephson junction
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Figure 2.2.: Example of a double-well potential with minima at ra = ±q for q = 2 and
an inter-well barrier height of b = 2.

On the basis of these considerations the Hamiltonian is rewritten in units of E∗ and
R∗:

Ha = − µ

ma

∂2

∂r2a
+
ma

µ
αar

2
a −

1

r4a
︸ ︷︷ ︸

H
(0)
a

+αa
ma

µ

(
q2

4
− 3r2a

2
+

r4a
4q2

)

︸ ︷︷ ︸

H
(1)
a

(2.4)

As described above, quantum defect theory is implemented to deal with the term −1/r4a

-10 -5 5 10
ra

-40
-20

20
40
60
80

E

Figure 2.3.: Qualitative illustration of the potentials in eq. 2.4 with αa
ma

µ
= 1 in units of

E∗ and R∗. The blue, dashed line corresponds to r2a − 1/r4a in H
(0)
a and the red, dashed

line to the expression in the brackets in H
(1)
a for q = 2. The thick, orange curve is the

sum of both potentials.

in H(0)
a for ra → 0. The Schrödinger equation for H(0)

a is given by:

E(0)ψ = H(0)
a ψ (2.5)
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2.2. Double well with fixed ion

For ra → 0 we can neglect all potential energy terms but −1/r4a, which leaves us with:

0 =

(

− µ

ma

∂2

∂r2a
− 1

r4a

)

ψ (2.6)

The solutions of eq. 2.6 include the short-range phase φ mentioned above. In the one
dimensional case we have to replace φ by a pair of phases, φe and φo, to allow even and
odd solutions, ψ̃e and ψ̃o, which are given by [10]:

ψ̃e(ra) = |ra| sin
(√

ma

µ

1

|ra|
+ φe

)

, (2.7)

ψ̃o(ra) = ra sin

(√
ma

µ

1

|ra|
+ φo

)

. (2.8)

Solving the Schrödinger equation 2.5 is done with the Numerov method [16, 66], using
the wave functions eqs. (2.7, 2.8) as a boundary condition at some point rmin & 0.
We choose rmin such that 1

r4min
≫ Emax, where Emax is the largest energy considered.

The short-range phases are not known for any atom-ion combination, so we choose
realistic values for our calculations1. This method gives the solutions ψ(0)

k (ra) with the

eigenenergies E(0)
k with quantum number k.

Following [11] we expand the solution to the double well problem in the basis of ψ(0)
k (ra):

ψ(ra) =
∑

k

ck ψ
0
k(ra) (2.9)

The Schrödinger equation of this problem which has to be solved is given by:

∑

k

ck

(

E
(0)
k +

αq2

4
− 3αr2a

2
+
αr4a
4q2

)

ψ0
k(ra) = E

∑

k

ckψ
0
k(ra) (2.10)

The next step is to multiply
(
ψ0
k′(ra)

)∗
from the left and integrate over ra:

δk′kck′

(

E
(0)
k +

αq2

4

)

− α
∑

k

ck

∫

dra (ψ
0
k′(ra))

∗
(
3r2a
2

− r4a
4q2

)

ψ0
k(ra) = Eck′ , (2.11)

where δk′k is the Dirac delta function. Eq. 2.11 is a matrix equation which can be
written in the form: ∑

k

Hk′kck = Eck′ (2.12)

In this case, to determine Hk′k we will have to evaluate one quadratic and one quartic
matrix element:

M
(2)
k,k′ =

∫

dra(ψ
0
k(ra))

∗r2a ψ
0
k(ra) (2.13)

1We note that these values can be tuned in an experiment by external confinement or with magnetic
fields [17].
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2.2. Double well with fixed ion
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Figure 2.5.: Wave functions for the ground state (blue) and the first excited state (red)
for a double well potential with q = 1.8R∗ and αa = 10. The double well potential
including atom-ion interaction is shown in black.

φe = −π/4 and φo = π/4, the red, dashed lines represent the spectrum for φe = π/4 and
φo = π/3. This spectrum illustrates the short-range phase dependence of the double well
problem. For large inter-well distances the spectrum is degenerate as there is no coupling
between the wells, such that the spectra are equal to that of a harmonic oscillator, i.e.
the level spacing is equidistant. For smaller distances the coupling is getting stronger
such that the degeneracy of both spectra is lifted as the energies for even and uneven
wave functions (eqs. (2.7, 2.8)) start to differ. In particular, the states corresponding to
the trap ground states split in symmetric and antisymmetric superpositions given by:

Φg,e(r) =
1√
2
(ΦL(r)± ΦR(r)) (2.16)

with the energies Eg and Ee where ΦL,(R) is the wave packet located in left (right)
well [61]. This can also be seen in fig. 2.5 where the wave functions for the ground state
(blue) and the first excited state (red) are shown as a function of the inter-well distance
2q and in fig. 2.6 which shows the even and odd wave functions also for the first few
excited states and a molecular state2. When the energy splitting ∆E = Eg − Ee is
much smaller than the energy gap to the other levels in the spectrum we can employ a
two-mode approximation [54] with the inter-well coupling J which is given by:

J =
∆E

2~
(2.17)

For φe = −π/4, φo = π/4 the tunnelling rate at q = 1.8R∗ (black, dashed line) is
J = 2π · 90Hz and for φe = π/4, φo = π/3 it is J = 2π · 60Hz. Since the short-range

2Although the molecular states have a lower energy, we always refer to the ground state as the state
that can be associated with the trap ground state for large well separation.
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2.3. Double well with moving ion

where U0 = 8πas,Rbµ/maR
∗ measures the strength of the atom-atom interaction and

as,Rb = 106 · a0 is the atom-atom s-wave scattering length for 87Rb where a0 is the
Bohr radius. Since the wave functions depend on the short-range phases, also Û (like
Ĵ) depends on the spin of the ion and is an operator.

With this description of the many-body system we can describe interesting interactions
such as self-trapping [62] and entanglement [63]. Following [67] we introduce the inter-
action parameter Λ = U N/2 J where N is the total number of atoms. For Λ > Λc = 2,
a state which is initially localized in one well is predicted to remain in this well. We are
therefore in the self-trapping regime. We can plot the time-depended relative population

self trapping

tunnelling

Figure 2.7.: Relative population in the left well as function of time for N = 20 atoms,
α = 0.026, ωa = 2π · 200Hz, q = 6.39R∗, φ↑ = −π

4 and φ↓ = π
4 based on three-

dimensional calculations [51].

in the left well for N = 20 atoms, φ↑ = −π
4 and φ↓ = π

4 (see fig. 2.7). This plot is based
on three-dimensional calculations [51] and was obtained by numerically integrating the
Schrödinger equation for the Hamiltonian 2.19. Because it is three-dimensional there
is only one short range phase per spin state. For N = 20 atoms we obtain interaction
parameter values of Λ↑ = 5.2 > Λc and Λ↓ = 0.32 < Λc which means that for an ion
with |↑〉 we are in the self-trapping regime and for an ion with |↓〉 we are in the Rabi
regime where the atoms are oscillating between the two wells via tunnelling.

2.3. Double well with moving ion

We now consider a system similar to the one in section 2.2 but now we allow the ion to
move. In this case the Hamiltonian for a single ion and atom is given by:

H =
p2i
2mi

+
1

2
miω

2
i r

2
i

︸ ︷︷ ︸

Hi

+
p2a
2ma

+ Vdw(ra)
︸ ︷︷ ︸

Ha

− C4

(ri − ra)4
︸ ︷︷ ︸

Hia

, (2.21)

where pi = −i~ ∂/∂ri is the momentum of the ion, mi its mass and ωi is the ion trap
frequency. Now that the ion and the atom are moving, the interaction term Hia depends

11



2. Dynamics of an ion-controlled Josephson junction

on the relative coordinate (ri − ra). Hence it is reasonable to rewrite the Hamiltonian
in terms of center of mass (COM) and relative coordinates, using:

R =
miri +mara
mi +ma

(COM coordinate) (2.22)

r = ri − ra (relative coordinate) (2.23)

M = mi +ma (total mass) (2.24)

µ =
mima

mi +ma
(reduced mass) (2.25)

ωR =
miω

2
i +maω

2
a

mi +ma
(2.26)

The Hamiltonian can now be written as the following sum:

H = H
(0)
R +H(0)

r +H(1) , (2.27)

where H(0)
R , H(0)

r and H(1) are given by:

H
(0)
R = − ~

2

2M

∂2

∂R2
+

1

2
Mω2

RR
2 (2.28)

H(0)
r = − ~

2

2µ

∂2

∂r2
+

1

2
µω2

rr
2 − C4

r4
(2.29)

H(1) = µ(ω2
i − ω2

a)Rr + Vdw(R, r)−
µω2

a

2

(
ma

µ
R2 +

µ

ma
r2 +Rr

)

. (2.30)

Eq. 2.28 is the Hamiltonian of a harmonic oscillator with the mass M , the coordinate R
and the trap frequency ωR. The solutions of this Hamiltonian are therefore Fock states
fn(R) with energies En = ~ωR(n + 1

2) where n = a†a is the particle number. Eq. 2.29

is similar to H(0)
a in eq. 2.4 for a fixed ion (section 2.2). As described in that section

we can solve the corresponding Schrödinger equation using quantum defect theory. The
solutions of this problem are the wave functions Φk(r) with the energies Ek. The terms
in eq. 2.30 can be understood as follows: The first term µ(ω2

i − ω2
a)Rr expresses the

effect to the system due to the mismatch between the ionic and atomic trap frequencies.
The second term Vdw(R, r) is the double well potential in COM and relative coordinates

and the third term −µω2
a

2

(
ma
µ R

2 + µ
ma
r2 +Rr

)

corresponds to −1
2maω

2
ar

2
a which was

transformed in the new coordinates. This term was added to simplify eqs. (2.28,2.29)
and now it is subtracted again.

It is useful to introduce the following parameters:

γ =
ωi

ωa
, α =

(
~ωr

2E∗

)2

, β2 =
1

M

(
mi + γ2ma

)
, B2 =

ma + γ2mi

mi + γ2ma
.
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2.3. Double well with moving ion

With these parameters and in units of E∗ and R∗ the Hamiltonians take the form:

H
(0)
R = − µ

M

∂2

∂R2
+
M

µ
B2αR2 , (2.31)

H(0)
r = − ∂2

∂r2
+ αr2 − 1

r4
, (2.32)

H(1) = − α

β2

(
µ

ma
M (2) − 2γR⊗M (1) +

ma

µ
R2

)

+
αma

µβ2

(
q2

4
− m2

i

2M2
M (2) +

m4
i

4M4q2
M (4)

+
mi

M
R⊗M (1) − m3

i

M3q2
R⊗M (3) − 1

2
R2

+
3m2

i

2M2q2
R2 ⊗M (2) − mi

Mq2
R3 ⊗M (1) +

1

4q2
R4

)

, (2.33)

with the matrix elements

M
(j)
kk′ =

∫

Φ∗
k′(r) r

j Φk(r)dr . (2.34)

The Hamiltonian can be diagonalized in the basis |fn(R)Φk(r)〉.
As an example we again consider a system of a single 87Rb atom and a single 171Yb+

ion. This is illustrated in fig. 2.8 where the resulting correlation spectrum (black line)
compared to the same system but neglecting the atom-ion interaction (red, dashed line)
are plotted as a function of the inter-well distance 2q. The parameters are chosen to be:
α = 10, γ = 5.5, φe = −π/4, φo = π/4. Due to the fact that the ion is now allowed to
move these spectra look more complicated than in fig. 2.4. At large inter-well distances
the Fock states (|00〉, |10〉, ...) are the same for both spectra. This is because for large
distances the ion and the atom are localized in well separated traps hence the atom-ion
interaction is very small. This slightly changes for atom states of higher order. Here,
the interaction has an effect even for large separations of the traps.

The corresponding probability distributions that asymptotically are related to the states
|00〉, |02〉, |10〉 and |11〉 for an inter-well distance of q = 2.55R∗ (green circles in fig. 2.8)
are shown in fig. 2.9. These clearly illustrate the probability of finding the atom at a
point ra and the ion at a point ri, with black (white) being high (zero) probability. For
ra − ri ≫ 0 the states somewhat resemble the Fock states, with the number of nodes in
each direction giving the quantum numbers |nm〉 for the ion and the atom. For short
ranges (ra − ri ≈ 0) atom-ion interactions dominate such that there are many sharp
features in the wave functions which are not completely resolved in the plot.

We can also calculate the resulting correlation spectrum of this system as a function of
the inter-well distance 2q for the special case when α =

(
~ωr
2E∗

)2
= 100, γ = ωi

ωa
= 1,

φe = −π/4, φo = π/4 (see fig. 2.10). This plot illustrates the initial degeneracy of each
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2.4. The effect of imperfect ion cooling on tunnelling

a) b)

c) d)

Figure 2.9.: a)-d): Probability distributions of the ion-atom states asymptotically corre-
sponding to |00〉, |02〉, |10〉 and |11〉 for an inter-well distance of q = 2.55R∗ for 87Rb
and 171Yb+ with α = 10, γ = ωi

ωa

= 5.5, φe = −π/4, φo = π/4 corresponding to
ωa = 2π × 1.794 kHz and ωi = 2π × 9.868 kHz.

where the tunnelling rate is given by the energy difference ∆E = Eg − Ee between the
states Φg and Φe (eq. 2.17). For further considerations it is convenient to include the
vibrational quantum number n of the ion such that the states are given by |Φe〉n and
|Φg〉n. The curve for the state |10〉L looks very similar to the one for |00〉L but around
q = 3.1R∗ an avoided crossing appears making it harder to keep track of |Φe〉n and
|Φg〉n. While decreasing q further even more avoided crossings appear. This could lead
to trouble in an experiment where we want to prepare such states with well defined
inter-well coupling. To achieve that the avoided crossings need to be passed diabatically
but without exciting the atoms’ motion. For |00〉L, |10〉L, |20〉L and |30〉L we are still
able to keep track of |Φe〉n and |Φg〉n with great certainty but for |n0〉L with n ≥ 4 this
is associated with a relatively large degree of uncertainty making it almost impossible
to prepare the desired system.

To fully understand this problem the Schrödinger equation for dynamically changing q(t)
needs to be solved while keeping track of all probability amplitudes for each avoided
crossing. A simplified approach is to assume that we already prepared a mixture of
the states represented by the four red dots in fig. 2.11. We therefore only take into
account states with n < 4 which simplifies the problem extraordinarily. In this case we
can assume that we start with a mixture of superpositions 1√

2

(
|Φe〉n − |Φg〉n

)
such that
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2. Dynamics of an ion-controlled Josephson junction
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Figure 2.10.: Double well spectrum with moving ion for 87Rb and 171Yb+ with α = 100,
γ = 1, φe = −π/4, φo = π/4.

the atom is mostly in the left well. We include the thermal nature of the system by
weighting these superpositions with a thermal distribution given by:

Pn(n̄) =
1

1 + n̄

(
n̄

n̄+ 1

)n

, (2.36)

where n̄ corresponds to the average number of vibrational quanta in the ion in the
asymptotic state. Since n > 4, n̄ is limited to small values. For this model the energy
difference ∆E(n) = E

(n)
g − E

(n)
e between each pair of states is given by:

~J = (0.0146, 0.0137, 0.0057, 0.0070)E∗ (2.37)

We achieve very stable tunnelling due to the similarity of the first two values that are
most prominent in this distribution. Since these values are much bigger than the other
two values we can estimate that with increasing n̄ the tunnelling will die out slowly.
To determine the tunnelling dynamics we compute the square of the overlap with the
initial state after some time t. The dynamics of each state is given by:

|ψ(t)〉n = e
−iE

(n)
e t
~ |Φe〉n + e

−iE
(n)
g t

~ |Φg〉n , (2.38)

and since it is a thermal problem we end up with an incoherent sum of frequencies to
estimate the probability of finding the atom once more in the left state after some time
t which is given by:

PL(n̄) =
∑

n

Pn| n 〈ψ(0)|ψ(t)〉n |2 =
1

2
+

1

2

∑

n

Pn cos

(
Jnt

~

)

(2.39)

The resulting tunnelling dynamics for n̄ = 0, 0.3 and 0.6 are shown in fig. 2.12. Since we
are only considering the dynamics for n < 4 we cut the thermal distribution (eq. 2.36)
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Figure 2.11.: Enlarged view of the five first Fock states of the ion in the spectrum of a
double well with moving ion for 87Rb and 171Yb+ with α = 10, γ = ωi

ωa

= 5.5, φe = −π/4,
φo = π/4 corresponding to ωa = 2π× 1.794 kHz and ωi = 2π× 9.868 kHz. Every red dot
actually indicates an even and an uneven state while the tunnelling rate is given by the
energy difference between these states (see text).

such that part of the population is neglected. For example, for n̄ = 0.6 still 98% of the
population is included. Even for this large fraction value the neglecting affects the system
in such a way that the tunnelling amplitude goes down far less than we would expect
for non-pure state dynamics. For larger values of n̄ we will require more sophisticated
methods such that we can perform time-dependent analysis of the complex problem.
However it is clear that for small time scales and small average quantum number n̄,
we can expect reasonable tunnelling dynamics. In the present example, the tunnelling
is also more robust due to the similarity of the tunnelling rate for n = 0 and n = 1,
the two largest populations in the thermal distribution. A next step in this calculation
would be to include dissipation, such as ion heating and/or cooling, and studying the
many-body scenario.
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2. Dynamics of an ion-controlled Josephson junction
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Figure 2.12.: Probability of finding the atom once more in the left well after some time
t for a thermal ion state with n̄ = 0, 0.3, 0.6 corresponding to black, blue and red
respectively.
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3
Trap design

In this chapter the design and development of a combined atom-ion micro trap is doc-
umented and explained in detail.

3.1. General considerations

There are numerous ways to realize a combined atom-ion micro trap. The most straight
forward approach being glueing a planar ion trap to an atom chip. A more intricate
design where the trapping fields are derived from the same structures would however
give benefits in trap depth and stability and we were first considering a trap of this
kind. However, this introduces also a number of problems such as heating of the chip
due to the atom trap wires which carry relatively high currents, and it requires very
complicated designs to generate the correct fields for both, atoms and ions, which could
cause new problems. Another big disadvantage of this design is that the ions can directly
sense the electric field of the atom trap wires which can perturb the ion trap.

We decided to use a fully developed and tested ion trap chip and to design a planar atom
trap which we can mount beneath the ion trap. This simplifies the problem significantly
because here we don’t have the task to invent a completely new design as each technique
itself already exists. Another advantage of this design is that we can concentrate on
good heat dissipation from the atom trap wires to the heat sink which enables us to
work with higher currents. The big disadvantage of this design is that we have to align
the chips to each other with high precision and the atomic trap depth is reduced by the
nearby surface. Care must be taken to ensure that the ion trap surface is parallel to the
atom trap surface and that both trapping axes are placed directly above one another.

3.2. The atom-ion micro trap

An exploded view of the design of the combined atom-ion micro trap developed in this
thesis is shown in fig. 3.1. It primarily consists of a big octagonal chip with an outside
diameter of 45mm which is used as the surface for the atom trap wires (section 3.4)
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3. Trap design

The motion of an ion is governed by the Schrödinger equation:

i~
∂

∂t
Ψ(~x, t) = H(t)Ψ(~x, t) (3.6)

and in typical Paul traps the dynamics along the three spatial dimensions is decoupled,
so that we can limit ourselves to a single dimension here. For the x-axis the associated
Hamiltonian H(t) is given by:

H(t) =
P 2

2mi
+

1

8
miΩ

2x2[a+ 2q cos(Ωt)] (3.7)

where mi is the mass of the ion and Ω is the frequency of oscillating potential. a and
q3 are trap parameters depending on mi,
Omega and the charge of the ion e. For typical Paul traps a ≪ q and 0 < q < 4. The
Hamiltonians in y- and z-direction have similar forms but different values for a and q
while obeying the constraints set in eq. 3.5 with:

ax = ay = −1

2
az = a and qx = −qy, qz = 0 (3.8)

As a result of the electric potential (eq.3.2) the motion of the ion is an oscillation which
consists of a slow, harmonic secular motion with the frequency ωi and the micromotion
with the frequency Ω. These are related to each other by:

ωi =
Ω

2

√

a+
q2

2
with |q| ≪ 1 and |a| ≪ q2 (3.9)

If Ω is a high frequency, the RF-potential has little effect on the particle motion because
it averages to zero over the short time period 2π

Ω . Hence the micromotion vanishes such
that only the (harmonic) secular oscillation with the frequency ωi remains. This is the
basis for the secular approximation.

Following [69] we make the following ansatz for the wave function to study the quantum
case:

Ψ(x, t) = exp

[

− i

4~
mi qΩx

2 sin(Ω t)

]

Φ(x, t) (3.10)

Here, the idea is that most of the fast oscillating terms are included in the exponent.
Hence, we can consider Φ(x, t) as a wave function for the secular motion. This results
in the following Schrödinger equation for Φ(x, t):

i~
∂

∂t
Φ(x, t) =

[

− ~
2

2mi

∂2

∂x2
+ Veff(x)

]

Φ(x, t)

=

[

− ~
2

2mi

∂2

∂x2
+

1

2
miω

2
i x

2 −mi(γ
′ ωi)

2x2 cos(2Ωt)

+2i~ γ′ ωi

(

x
∂

∂x
+

1

2

)

sin(Ωt)

]

Φ(x, t) (3.11)

3We note that this parameter q is not to be confused with the inter-well separation used in the previous
chapter.
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3.3. The ion micro trap

where Veff(x) is the time-independent potential energy and γ′ is given by:

γ′ =
1

√

2
(

1 + 2a
q2

) (3.12)

The corresponding Hamiltonian Heff(t) for the solution Φ(x, t) is therefore given by:

Heff(t) =
p2

2mi
+

1

2
miω

2
i x

2 −mi(γ
′ωi)

2x2 cos(2Ωt)− γ′ωi{x, p} sin(Ωt) (3.13)

where {x, p} is the anticommutator of the position and momentum operators. The
first two terms represent an harmonic trap at the secular frequency, while the latter
two terms represent the effects of the micromotion. It can be shown [6] by employing
Floquet theory, that these last terms are unimportant when considering only ions. This
is the quantum mechanical basis for the secular approximation.

When the ion is strongly interacting with another system, such as atoms, the effects
can also be studied using Floquet theory [6] and the picture changes. In a next step,
we plan to take these last two terms into account in the calculation of the double well
problem discussed in chapter 2. Unfortunately, the necessary Floquet theory results in
an extremely large Hilbert space, and we have not been able to tackle the full problem
up until now. We note that the analysis is more complicated than the one in [6] as
the present problem inherently prevents making static approximations for either ion or
atom.

3.3.2. Design of the planar ion trap

The trap we will use in the experiment was made kindly available by Prof. Hartmut
Häffner from the Quantum Information with Trapped Ions-group4 at UC Berkeley. It is
a micro-fabricated surface electrode segmented trap with a trapping height of 100 µm.
The chip itself has a length of 9mm, a width of 4.5mm and a thickness of 500 µm and
it features a slit, 100 µm wide and 6.5mm long, right below the trapping region which
will be used to load atoms through (section: 3.2).

The fabrication process of this chip works as follows: the electrode structure is etched
on a fused silica5 substrate using a combination of laser weakening and HF-etching6

followed by evaporation of four metal layers. The metal layers are 20 nm Titanium,
150 nm gold, 20 nm Titanium and 150 nm gold, i.e. 300 nm gold in total [70].

4http://www.physics.berkeley.edu/research/haeffner/
5Non-crystalline glass of silicon dioxide (SiO2)
6HF-etching: Hydrofluoric acid is used to etch structures. It has a strong corrosive characteristic

against SiO2.
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3.4. The atom micro trap

The wires on the atom trap chip basically have two shapes, an u-shape and a z-shape
(see fig. 3.4). To be able to load the trap with as many atoms as possible we plan
to form a mirror magneto-optical trap (mMOT - section 3.4.1) which traps and cools
atoms in a wide area. By transferring the atoms to another mMOT which is formed by
a big u-shaped wire they are confined close to the trap surface. Next the mMOT will
be formed by a small u-shaped wire structure on the chip to compress the atom cloud
and to couple the atoms to the trap. Finally we aim to switch on the z-shaped wire
structure which forms the magnetic trap (section 3.4.2).

3.4.1. Mirror magneto-optical trap (mMOT)

As described in section 4.1 we will need four circularly polarized laser beams and a
magnetic quadrupole field to form a mMOT. The process which will be used in our
setup are illustrated in fig. 3.5.

1) A wide quadrupole field is generated by two current carrying coils (section 3.5) in
anti-Helmholtz configuration (2-5)mm above the reflecting surface of the chip. For a
proper trapping efficiency typically field gradients are chosen to be (10-20)G/cm [43].

2) The second step is to turn off the coils while switching on a big u-shaped wire
beneath the chip which generates a quadrupole field with a minimum at infinity. This
can be raised 2.0mm above the surface by applying an external homogeneous bias field
as described below. The atoms can now be confined right above the chip surface in a
spatially smaller area.

3) Before we will finally switch to the z-shaped wire a small u-shaped wire on the
chip will be used as an intermediate step because it generates a spatially smaller and
steeper mMOT volume which compresses the atom cloud further and shifts the atoms
close to the trap surface. The setup should allow us to trap 87Rb atoms which will be
evaporated from a dispenser7 with temperatures of about 750 ◦C and to cool them down
to TD = 140 µK. [72]

3.4.2. Magnetic trapping of atoms in a planar trap

The interaction energy of an atom with mass m, magnetic moment µ and hyperfine spin
F in a magnetic field is given by

U(r) = −µ ·B(r) = µBgFF ·B(r) , (3.14)

7SAES, Alkali Metal Dispenser, Rubidium, RB/NF/3.4/12 FT10+10
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3.4. The atom micro trap

where µB is the Bohr magneton and gF is the Landé factor. The spin of an atom in
a magnetic field performs Larmor precession about the direction of the local field with
the frequency

ωL = gFµBB(r)/~ . (3.15)

In an inhomogeneous field it can happen that the spin cannot follow the changing field
adiabatically such that Majorana spin flips occur which turn a "weak-field-seeking"
atom into a non-trappable "strong-field seeking" atom. In the adiabatic limit when
the Larmor precession frequency is much higher than the trapping frequency, i.e. when
ωL ≫ ωtrap, these Majorana losses are prevented and the potential is given by

U(r) = −gFµBmFB(r) , (3.16)

where mF is the magnetic quantum number. For 87Rb the "weak-field-seeking" mag-
netically trappable states are |F = 2,mF = 2〉, |F = 2,mF = 1〉 and |F = 1,mF = −1〉.
[73, 74]

The principle of a planar atom trap is to form the trapping field with a current carrying
wire and an homogeneous bias field as shown in fig. 3.6. The magnetic field of a current
carrying infinitely long perfect wire can be obtained from Biot-Savart’s law and is given
by

B(r) =
µ0I

2πr
(3.17)

where µ0 = 4π × 10−7 Vs/Am is the vacuum permeability and r = |~r| is the radial
distance to the wire while the direction of the magnetic field is perpendicular to ~r.
To create a field minimum at r = r0 we apply the external field Bext = − µ0I

2πr0
which

cancels the field at r0. In this example the infinite wire (red dot) is aligned at the z-axis
pointing out of the plane and it carries a current of 15A. To form a trapping potential
at (0, 0.5, 0)mm we need to apply the field ~Bbias = (60, 0, 0)G which is homogeneous
and aligned in x-direction. [39]

In the following the magnetic fields of the single wires, their gradients and also the
trapping frequencies for the z-shaped wire will be calculated. For the calculations and
graphs we used Wolfram’s Mathematica assuming perfect, infinitely thin wires and for
realistic wire calculations we used the add-on radia.
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3.4. The atom micro trap

3.4.3. Magnetic fields due to steady currents in finite perfect wires

The magnetic fields for finite perfect wires aligned in x-, y-, or z-direction with the
associated lengths dx, dy or dz are given by

~Bx(x, y, z, dx) = K
y2+z2

(

x+ dx
2

√

(x+ dx
2 )

2
+y2+z2

− x− dx
2

√

(x− dx
2 )

2
+y2+z2

)



0
−z
y



 , (3.18)

~By(x, y, z, dy) = K
x2+z2

(

y+ dy
2

√

(y+ dy
2 )

2
+z2+x2

− y− dy
2

√

(y− dy
2 )

2
+z2+x2

)



z
0
−x



 , (3.19)

~Bz(x, y, z, dz) = K
x2+y2

(

z+ dz
2

√

(z+ dz
2 )

2
+y2+x2

− z− dz
2

√

(z− dz
2 )

2
+y2+x2

)



−y
x
0



 , (3.20)

where K is

K =
µ0I

4π10−3[m]
= 1G for I = 1A . (3.21)

To calculate the desired fields one has to sum every single field:

~Bwires =
∑

j

~BD(j)(x− xj , y − yj , z − zj) (3.22)

where D(j) is the direction of wire j which is located at (xj , yj , zj). We also need to
define the bias field that creates a field zero at (x0, y0, z0)

~Bbias = − ~Bwires(x0, y0, z0) , (3.23)

The total magnetic field is

~Btotal = ~Bwires(x, y, z) + ~Bbias , (3.24)

and the gradient g can now be determined by calculating the derivative of ~Btotal

g =
d ~Btotal

d~x
= (~∇ ~Btotal) . (3.25)

This gradient g is a 3× 3 tensor.
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Figure 3.7.: u-shaped wires.

3.4.4. Magnetic fields of u-shaped wires

Field of big u-shaped wire

The magnetic field of the big u-shaped wire is (all positions and lengths in mm)(fig.
3.7):

~Bbig wire(x, y, z) = ~Bz(x− 2.6, y + 0.53, z, 14.2)

+ ~Bx(x+ 1.9, y + 0.53, z + 7.1, 8.9)− ~Bx(x+ 1.9, y + 0.53, z − 7.1, 8.9)

+ ~By(x+ 6.3, y + 9.93, z + 7.1, 9.4)− ~By(x+ 6.3, y + 9.93, z − 7.1, 9.4)

(3.26)

With respect to eq. 3.21 these values are directly proportional to the current we apply.
In the following the current in the wires is 15A. First we calculate the field and the
gradient for the big u-wire with a minimum at (x0 = 2.6, y0 = 2, z0 = 0)mm. The bias
field we need to generate is

~Bbias = − ~Bbig wire(2.6, 2, 0) =





10.3
2.2
0



G . (3.27)

We can now compute the magnetic field ~Btotal which is shown in fig. 3.8 and the
gradient

g(x0, y0, z0) =





−0.1 4.7 0
4.8 0.2 0
0 0 −0.1




G

mm
. (3.28)
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Figure 3.10.: Dimensions of z-shaped wire.
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Figure 3.11.: Ioffe-Pritchard trap potential with non-zero minimum formed by the z-
shaped wire and the external fields ~Bzw,bias(0, 0.7, 0)mm and ~Bz = (0, 0, 0.5)G.

3.4.5. z-shaped wire for magnetic trapping

Magnetic field of z-shaped wire

The magnetic field of the small z-shaped wire is:

~Bz-wire(x, y, z) = ~Bz(x, y, z, 1.4)+

~Bx(x− 3.5, y, z − 0.7, 7) + ~Bx(x+ 3.5, y, z + 0.7, 7)
(3.34)

The bias field we apply for a field zero-minimum at (x0 = 0, y0 = 0.7, z0 = 0)mm is

~Bbias = − ~Bz-wire(0, 0.7, 0) =





30.3
0

−21.2



G . (3.35)
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3. Trap design

To avoid Majorana spin flips we will apply another external field ~Bz in the direction of
the trapping wire to raise the minimum of the field to non-zero and with respect to eq.
3.15 to achieve the adiabatic limit [73]. The external field

~Bz =





0
0
0.5



G (3.36)

not only forms a non-zero minimum but we also have to consider that it displaces the
minimum to

(x∗0 = −7.5× 10−9, y∗0 = 0.700 035, z∗0 = 5.3× 10−12)mm

which is at last the centre of our trap. As shown in fig. 3.11 the z-shaped wire and the
applied external fields ~Bzw,bias(0, 0.7, 0)mm and ~Bz = (0, 0, 0.5)G form a Ioffe-Pritchard
trap with a non-zero minimum [76]. The resulting fields and Potentials are shown in
fig. 3.12.

3.4.6. Aligning the atoms with the ion trap

Since the magnetic field of a z-shaped wire is not always symmetric to the x-axis, the
axial direction of an atom cloud trapped in this field does not necessarily need to be
parallel to the z-axis. The angle between both axes is given by [77]:

θ = − arctan

(
cos(2ξ) sec(ξ)

2 + cot2(ξ)

)

(3.37)

with ξ = arctan (2 · y0/s), where s is the length of the z-shaped wire in z-direction. As a
result the length s needs to be 1.4mm for an angle of zero (see fig. 3.13)which is exactly
the case when the corresponding eigenvector is ~v(0) = (0, 0, 1)T .

The gradients are:

g(x∗0, y
∗
0, z

∗
0) =





0 64.9 0
64.9 0 −0.3
0 0.3 0




G

mm
. (3.38)

As we can see, also a z-shaped wire forms a field which is in the x-y-plane under an
angle of 45°. The corresponding eigenvectors are:

~v(64.9) ≈ 1√
2





1
1
0



 , ~v(−64.9) ≈ 1√
2





1
−1
0



 and ~v(0) ≈





0
0
1



 . (3.39)

As explained in section 3.4.6 the eigenvector for the zero eigenvalue determines the
direction of the trapped atom cloud which is in this case exactly in the z-direction.
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3. Trap design

The eigenvalues are

gdiag(x
∗
0, y

∗
0, z

∗
0) =





64.9 0 0
0 −64.9 0
0 0 0




G

mm
, (3.40)

Magnetic field and trap depth using radia

Figure 3.14.: Design in radia for simulating the z-shaped wire.

A z-shaped wire model constructed in radia is presented in fig. 3.14. The wire has an
height of 0.08mm and a width of 0.6mm. With this model we are able to numerically
calculate the magnetic fields of realistic wires. The magnetic potentials of a realistic
z-wire by radia (dashed) and of a perfect finite wire (solid) are plotted in fig. 3.15.
Here we can see quite clearly that the deviations of the potentials due the dimensions
of the wire in contrast to the potentials of a perfect finite wire are detectable but
relatively small such we can work with the predictions made with the perfect finite wire
approximation.

The trap depth is given by the bias field, and the gradients and curvatures of the
magnetic field from the wire. Due to the external field the trap depth is determined
with eq. 3.16 and Eth = kB T to 2.3mK. But since the trapping region is limited by
the surface of the ion trap at y = 0.6mm the real trap depth will be 273 µK. The
temperature we want to reach is in the low µK-regime such that the trap depth will be
no limiting factor in our experiment [78].

Trapping frequencies

For analysing trap properties like the trapping frequencies it is necessary to calculate the
gradient g (eq. 3.38) as well as the curvature c = ∇g which are 3× 3 and accordingly
3× 3× 3 tensors. We can also define the trap tensor which is given by [77]:

t(x, y, z) = B(x, y, z) · c(x, y, z) + g(x, y, z) · g(x, y, z) (3.41)
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Figure 3.15.: Magnetic potentials of z-wire by radia (dashed) and with perfect finite wire
approximation (solid) for I = 15A and a trapping height of y0 = 0.7mm.

The eigenvalues of t(x, y, z), Tn (n = 1, 2, 3) are:

~T =





4212.60
4189.79
21.85




G2

mm2 (3.42)

and the trap frequencies in Hz can now be obtained with:

νn =
1

2π

√

102gFmFµB
m

√

Tn
|B(x∗0, y

∗
0, z

∗
0)|

(3.43)

For our trap they are:

~ν =





1170.66
1167.49
84.30



Hz (3.44)

Spatially resolved atom-ion interactions

One of the main tasks of this experiment is to resolve the interaction of atoms with ions
caused by an induced dipole moment. As explained in chapter 2 it is useful to define a
characteristic range of the interaction which is given by the length scale R∗ =

√

2C4/~2.
For resolving the interaction the atomic wave packet size la =

√

~/maωa needs to be in
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3. Trap design

the same range as R∗. For 171Yb+ and 87Rb we get R∗ = 306 nm and therefore a required
trap frequency of ν∗ = 1235Hz. Compared to the trapping frequencies received in eq.
3.44 this is very close to what we will achieve using a current of 15A. The corresponding
single atom wave packet sizes are:

la =





315, 25
315, 67
1174, 76



 nm (3.45)

This calculation is based on the infinity thin wire model. We note that the finite size of
the wires slightly reduces the frequency.

Ion strings and atoms
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Figure 3.16.: Two-dimensional potential contour plot. The contours are 10 nK apart,
the outer contour corresponds to 100 nK, which is the chemical potential of about 1200
atoms in the mean field approximation. Also shown is an ion string with equidistant
spacing of 5 µm. The ion radius is set to R* = 306 nm.

We can try and find out what geometry of atoms and ions our setup can realise using
mean field theory. In this example the ions are 5 µm apart and their size corresponds
to the atom-ion interaction range R∗ = 306 nm (see fig. 3.16). The contours of the
potential are 10 nK apart such that the outer contour corresponds to 100 nK. This is
the chemical potential of about 1200 atoms in the mean field approximation. Due to
gravity (1.52G/mm) the ions are a bit displaced. In the experiment we will have to
compensate this effect.
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3.4. The atom micro trap

3.4.7. Production: thick film technology

The production of the chip is done by Mr. Gebauer who is part of the research group of
Prof. Wunderlich (quantum optics) at the physics faculty in Siegen. They use thick film
technology to print UHV8-compatible, sub-mm-scaled electrical circuits on a substrate
which is typically alumina (Al2O3). A major benefit of using this technology is the
possibility of printing multiple circuit layers separated by isolating layers which we used
for our design. A detailed exposition of this procedure is given in [79].

3.4.8. Heating versus material

A technical task while designing the chip is to ensure good heat dissipation between
the wires and the heat sink. It has been proven that thermal surfaces generate elec-
tromagnetic fields which disturb nearby cold atom clouds. This leads to heating effects
which have to be avoided. In addition heating can cause wire destruction and vacuum
perturbation caused by an outgassing hot wire. A reasonable heating of the wire where
these effects do not increase alarmingly is ∆T ≤ 50K [80–82]. As illustrated in the
following, heating and heat dissipation both strongly depend on the choice of material
for the wire and the chip-substrate.

The heating of a current carrying wire of width w and height h is caused by its electrical
resistance (Joule heating) which can be calculated using Ohm’s law R = U/I with

R = j · ρ , (3.46)

where j = I
w·h is the current density and ρ is the electrical resistivity of the wire

material. Due to Joule heating electrical energy is converted to thermal energy which
leads to power losses corresponding to the released heat and is given by

P = I2R . (3.47)

The dissipation of heat through a substrate strongly depends on its thermal conductivity
λ and heat capacity C. Following the scheme presented in [83] the expected time-
dependent heating of a current carrying wire on a substrate ∆T (t) is given by

∆T (t) =
hwρj2

2πλ
Γ

(

0,
Cw2

4π2λt

)

≈ ρIj

2πλ
ln

(
4π2λt

Cw2

)

(3.48)

where Γ(a, x) =
∫∞
x ta−1e−tdt is the incomplete gamma function.

As calculated in section 3.4.5 the current for reaching trapping frequencies of 1.2 kHz
will be at least 15A. Due to the building technique described in section 3.4.7 the height
of the wire h is around 60 µm which corresponds to four printed layers. By printing

8UHV: ultra-high vacuum
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3. Trap design

more layers we run the risk of bubble formation which would ruin the magnetic fields.
Also the width w is limited to 600µm to preserve high gradients and specified trapping
regions. With respect to eq. 3.48 this leaves us with three degrees of freedom: ρ, λ
and C which are material properties of the wire and the substrate. A table of materials
which have already been used in thick film technology with properties of matter is listed
in table 3.1.

Wire materials electrical
resistivity ρ
[nΩ m]

Substrates Thermal
conductivity
λ [W/(m K)]

Heat capacity
C [J/(m3 K)]

Au 22.14 Al2O3 24 3.024× 106

Ag 15.87 AlN 180 2.4124× 106

Pd/Ag ≈32.4 BeO 330 3.081× 106

BaTiO3 6 3.172× 106

Table 3.1.: Material properties

Wire material

It is not recommended to use silver (Ag) or palladium/silver (Pd/Ag) alloys due to
oxidation effects. So we have decided to use gold (Au).

Substrates

Since beryllium oxide (BeO) and barium titanate (BaTiO3) are very toxic they should
be preferably avoided. Alumina (Al2O3) is commonly used in thick film technology but
also aluminium nitride (AlN) is now being used more often because it has a much higher
thermal conductivity. The time-dependent heating of a gold wire on alumina and on
aluminium nitride substrates based on eq. 3.48 are compared in fig. 3.17. An initial
fast temperature increase (µs scale) results from a thermal contact resistance between
the wire and the substrate and is not covered by eq. 3.48, which only holds for longer
time scales. After this increase the temperature rises slowly as seen in table 3.2.

From this it follows that AlN would be a good choice for our setup but since the mea-
surements are in a short time scale also Al2O3 complies our demands.
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3. Trap design

Al2O3 AlN

∆T (1 s) 44.4K 6.6K

∆T (10 s) 49.3K 7.2K

∆T (100 s) 54.3K 7.9K

Table 3.2.: Temperature increase of gold wire on alumina (Al2O3) or aluminium nitride
(AlN) substrates for t = 1 s, t = 10 s and t = 100 s for a current of 15A.

plotted. Obviously our results do not match the expected values. It seems to us that the
gold paste, used for this process, has a much smaller temperature coefficient α which is
approximately α = 0.0083K−1 (green, dashed line). Due to this it would be advisable
to measure α once we have received the trap from Siegen.

3.4.9. Radio frequency induced adiabatic dressed fields

The realization of a double well potential in our trap will be based on the scheme of
adiabatic dressed potentials (ADP). As explained in section 3.4.2, the interaction energy
of an atom confined in a static magnetic field B(r) is given by eq. 3.14. In the adiabatic
limit, where the Larmor frequency ωL is larger than the atomic trap frequencies, this
equation simplifies to:

U(r) = −gFµBmFB(r) (3.16)

In the presence of a radio frequency (RF) magnetic field BRF(t) the atomic states have
avoided crossings at the points where the RF frequency ωRF is in resonance with the
frequency difference between the mF states. The new interaction energy, experienced
by the dressed atoms can be determined as follows:

Following [84] strong coupling is obtained where the static field direction is perpendicular
to the direction of the RF field. In the experiment, the RF field will mostly be polarized
in the y-direction as it derives from a coil mounted beneath the trap such that we can
write:

BRF(t) = êyBRF cos(ωRFt) (3.51)

As illustrated in section 3.4.5 the Ioffe-Pritchard field B(r) will mostly be pointing in
the z-direction. From this it follows that we have strong coupling. For determining the
interaction we define a rotation R that rotates any vector into the z-direction while

42



3.4. The atom micro trap

a) 1 2 3 4 5 6 7
I @AD

0.5

1.0

1.5

U @VD

1 2 3 4 5 6 7
I @AD

10

20

30

40

50
T @°CD

b) 0.21 0.22 0.23 0.24 0.25 0.26

U

I
@V�AD

10

20

30

40

50

T @°CD

Figure 3.18.: a) Self-made test-measurements of U(I) and T (I) of a gold wire with
(l = 30mm, h = 12− 14 µm and b = 500µm) on the AlN test-substrate.
b) T(U/I). Measured results (red dots), expected results (black line) and linear fit to
data where α = 0.0083K−1 (green, dashed line).

keeping its length unchanged. For an arbitrary vector (a, b, c)T this rotation is given
by [84]:

R(a, b, c) =






b√
a2+b2

− a√
a2+b2

0

ac√
a2+b2

√
a2+b2+c2

bc√
a2+b2

√
a2+b2+c2

√
a2+b2√

a2+b2+c2

− a√
a2+b2+c2

− b√
a2+b2+c2

c√
a2+b2+c2




 (3.52)

Using this we can rotate the local static field direction into the z-direction, such that
the new Hamiltonian is given by9:

H = µB|B(r)|σz + µBR(B(r))[êyσy]BRF cos(ωRFt) (3.53)

9For simplicity, we consider a two-level system in this section. The theory can be generalised to larger
spin systems.
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In consideration of the trapping potentials in fig. 3.12 the Ioffe-Pritchard trap has most
of its components in the z-direction but there are also field components in the x- and y-
direction forming a two-dimensional quadrupole field under an angle of 45°. Taking this
into account, for ωL < ωRF the resonance condition is met on a two-dimensional closed
equipotential surface. The coupling Ω(r) however is varying along this surface such that
for example in the x, z-plane with z = 0 the resonance condition is only met on a circle.
Since the coupling is strongest where the static field direction is perpendicular to the
direction of the RF field which is polarized along the y-direction, coupling is reduced
where the static field points more in this direction (see also fig. 3.12). Accordingly the
coupling is affected less where the static field points in the x-direction. Therefore, two
minima occur on the circle where the static field points in the z-direction such that the
trapping potential is split into a double well potential [61,84–87].

For an external magnetic field of B0 = 0.5G, a maximum RF frequency of ωmax
RF =

2π · 704.8 kHz and the Rabi frequency Ω = 2π · 70.6 kHz we get a double well potential
that corresponds to the parameters q = 3.2R∗ and b = 0.35E∗ which corresponds to a
local trapping frequency of ωa = 2π ·563Hz in the x-direction. These values correspond
well to our calculations in chapter 2. The corresponding potential for these values are
shown in fig. 3.19. We note that the coil used for generating the dressed potential will
also be used for forced evaporative cooling.

3.5. Coil design

For the different mirror-MOT stages described in section 3.4.1 we need individual mag-
netic fields. At the initial stage two coils in anti-Helmholtz configuration are needed to
create a quadrupole field with a gradient of 10− 20G/cm at the trapping region. The
following stages (using the u-shaped wires) require homogeneous fields of at least 30G
generated by two coils in Helmholtz configuration. Due to the large vacuum chamber
we use to ensure optical access the distance between the coils is 30 cm such that we will
need high currents to reach those field values.

3.5.1. Magnetic fields and magnetic field gradients

The magnetic field on the centreline of a current carrying coil with only one winding
can be calculated from the Biot-Savart law given by: [88]

d ~B =
µ0
4π

I · dl × r̂

r2
(3.57)
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From this equation it follows that the magnetic field on the centreline (z-axis) due to a
coil of radius R carrying a current I in N windings at a distance z is given by:

Bz =
µ0
4π

2πR2IN

(z2 +R2)
3
2

(3.58)

The field of two coils in anti-Helmholtz configuration can therefore be calculated with:

Bz = Bz(z − z0)−Bz(z + z0) (3.59)

and for two coils in Helmholtz configuration it follows:

Bz = Bz(z − z0) +Bz(z + z0) (3.60)

As can be seen in section 3.6 the distance z0 from the coils to the trapping region at
the middle of the chamber and the mean radius R = 1

2 (Rmax +Rmin) of the coils are
limited by our setup to z0 = 15 cm and R = 5.5 cm. The maximum gradient for a fixed
distance between the two coils can be calculated using Ropt. =

√

(2/3)z0 which is in our
case 12.25 cm and which therefore cannot be fulfilled in our setup. Anyway, with these
values we get a gradient of:

g =
dBz

dz
= 0.0016(G/Acm) I ·N (3.61)

for anti-Helmholtz configuration and the magnetic field strength of these coils in Helmholtz
configuration is given by:

Bz = 0.0093(G/A) I ·N (3.62)

In fig. 3.20 the design we adopted for our setup is presented. It was originally developed
in Prof. Jochim’s group Ultracold Quantum Gases10 at the university of Heidelberg and
has been adapted in order to fit in our setup. These coils consist of a rectangular
(1.5 × 5.0)mm copper wire winded in one single-layer and of an heat sink for water
cooling. The great advantage of this design is that we can send very high currents
through the coil while keeping the coil radius small which enables us to create strong
fields with high gradients. A construction manual for the coils can be found in appendix
A.3 [89,90].

3.5.2. Power loss and heat dissipation

The coil has 14 windings and therefore we will need 435A to reach 10G/cm for the
quadrupole field in anti-Helmholtz configuration and 230A for 30G in Helmholtz con-
figuration. In the following we will analyse the coils for a maximum current of I = 435A.

10http://www.lithium6.de/
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Figure 3.20.: Design of coil with 14 windings and heat sink for water cooling.

The heat, generated in the coils due to Joule heating, has to be dissipated continuously
with the integrated water cooling system. The power loss of a current carrying winded
copper wire with the length l = 4.22m is

P (I) = ρ
l

hw
I2 = 1787W (3.63)

for I = 435A, h = 5mm and w = 1.5mm, where ρ = 16.78× 10−9 Ω/m is the electrical
resistivity of copper. This is a very high value and therefore the heat dissipation must
be brought to an optimum. The voltage drop at each coil is:

U =
P

I
= 4.1V (3.64)

It will be a hard match to work with these extreme high currents but since it is technically
feasible we are optimistic in getting close to the desired field strengths and gradients.

We are also looking forward to use these coils for our upcoming experiment with Lithium.
This is because neutral 6(7)Li atoms require high magnetic field Feshbach resonances.
The field for reaching the Feshbach resonances are needed for efficient evaporative cool-
ing.
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3.6. Vacuum Setup
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Figure 3.21.: Design of vacuum setup: a) Homebuilt carrier for trap and atom dispenser
attached on a special CF63 flange (b). c) Homebuilt carrier for ion source and additional
atom dispenser attached on a special CF40 flange (d). The height of this mounting
relative to the trap can be varied using a weld bellow with adjustment screws (e). f)
Inverted viewports for closer imaging of the atoms and the ions. g) Magnetic field coils.
h) Vacuum pump. i) Vacuum gauge. k) Valve for pump station.

The design of our vacuum setup is presented in fig. 3.21. The trap is mounted upside-
down on a homebuilt carrier (a) (appendix: A.A) which is attached to a special CF63
flange (b) having various electrical feedthroughs11. The trap surface is right in the
middle of the vacuum chamber12 which guarantees optimal optical access.

11Hositrad: 1x p/n 16802-01-W Sub-D Feedthrough (25-pin), 2x p/n 9216-08-W Pow Feedthrough
(4-pin)

12Kimball Physics: MCF800M-SphSq-G2E4C4 (metric) - Sperical Square Vacuum Chamber 4x8CF,
4x4.5CF, 4x 2.75CF with Metric-threaded bolt holes thoughout
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For the neutral Ytterbium oven we designed another carrier (c) (appendix A.A) attached
on a special CF40 flange (d) having one high current feedthrough13 which can be moved
using a weld bellow (e) with adjustment screws14. Both carriers also include atom
dispensers15 while the one right behind the trap is meant to be the primary atom source
and the dispenser at the ion source carrier is only meant to be used if we cannot trap
enough atoms this way. Since Rubidium is highly flammable the dispensers have a
barrier which is broken through while heating up for the first time. We have seen in
other experiments of our group that this carries the risk of polluting the trap surface
with parts of this barrier causing shorts. That is why we mounted the primary source
behind the trap. Using a movable mounting for the secondary source gives us also the
possibility to point the second dispenser away from the trap while heating it up.

For imaging atoms and ions we use inverted viewports (f) to place the optics close
to the trap which provides higher resolutions. The homebuilt magnetic field coils (g)
(section: 3.5) for the MOT will be attached on CF40 viewports under an angle of 45°
to the trap surface (section 3.4.1). To provide ultra-high vacuum (UHV) pressures of at
least 10−10 mbar we use a non-evaporable getter (NEG) pump16 (h) which is attached
at a special four-way cross right next to the chamber. The pressure will be measured
with an ion gauge17 (i) right next to the trap. The valve (k) is used to attach a pump
station typically consisting of a turbo pump and a rotary vane pump to produce the
pre-vacuum.

131x p/n 9216-08-W Pow Feedthrough (4-pin)
14Hositrad: Edge Weld Bellow + Alignment - CF35/SEWB
15SAES: 5G0125(*) - RB/NF/3.4/12 FT10+10
16SAES: 5H0170(*) - NEXTORR D 200 - 5
17Agilent Technologies: UHV-24 Ion gauge
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4
Laser system

The planned experiments involve neutral Rubidium (87Rb) atoms and Ytterbium (171Yb+

or 174Yb+) ions. Therefore, several lasers are required for cooling and imaging. As the
lasers for cooling and detecting the ion are still in the planning phase, this chapter will
focus the lasers for 87Rb. We have built our own diode lasers following and improving
on the scheme presented in [91] (4.3). A major improvement in output power is achieved
by using injection-locking in a master-slave setup (4.2).

4.1. Overview

In fig. 4.1 the D1 and D2 transitions and the hyperfine structure of 87Rb are outlined
[92]. The laser frequencies that are required for our purposes are indicated on the right
hand side. In the following the purpose of all of these is discussed. After that the setup
that generates these frequencies will be described.

Laser cooling

The laser is frequency stabilized to the F = 2 → F ′′ = (1, 3) crossover which is located
about 18MHz below the centre of the D2 transition (4.2.2). To perform laser cooling
the light is red detuned by about 6MHz with respect to the closed F = 2 → F ′′ = 3
transition [93]. This is done using an acousto-optic modulator (AOM)1 which is driven
by a 2W amplifier2 and a voltage-controlled oscillator (VCO)3 (The operation mode of
an AOM is illustrated in section 4.2.3).

In fig. 4.2 a scheme of a mirror magneto-optical trap (mMOT) as discussed in section
3.4.1 is shown which traps and cools the atoms close to the trap surface [39]. A mMOT
is formed with four circularly polarized4 beams. Two σ+ beams are counter propagating

1ISOMET, 1205c-1-869
2Mini-Circuits, ZHL-3A+, 29.5 dBm-39.5 dBm (891mW-8.91W)
3municom, ZX95-100-S+, f = 50−100MHz, Pout = +10 dBm, Tune 0.5 to 17V, Vcc = 12V

municom, ZX95-200-S+, f = 100−200MHz, Pout = +10 dBm, Tune 1 to 17V, Vcc = 12V
4Polarisation with respect to the direction of propagation.
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during optical pumping. Both beams are circularly polarized by quarter-wave-plates
and overlapped with non-polarizing beam splitters. This process typically takes less
than a ms.

Imaging

Imaging the atoms in the MOT is easy because the fluorescence due to the cooling light
itself can be imaged. After optical pumping and magnetic trapping there is no fluores-
cence light to observe. Instead absorption imaging will be used in which a collimated
probe beam is sent through the atom cloud. The light is absorbed by the atoms casting
a shadow that can be probed with a high-resolution camera. By determining the density
distribution we receive information about the atom cloud. A full description concerning
absorption imaging of a BEC can be found in [96].

The basic concept is to excite the atoms by driving the resonance below saturation.
In this case incoherent scattering can be neglected such that we have only coherent
scattering which leaves the ground state unchanged. This can be expressed with

∑

i

Ni 〈i| ei∆kr |i〉 =
∫

n(r)ei∆krd~r (4.2)

which is the Fourier transformation of the density distribution. From this it follows
that for constant scattering without heating the BEC the intensity should not exceed
saturation. The absorption is given with the Beer-Lambert Law

I(x, z) = I0 e
−σ0d(x,z) (4.3)

where σ0 is the resonant absorption cross section, d(x, z) =
∫
dy n(x, y, z) is the pro-

jected particle density and I0 is the initial intensity of the laser beam. This gives us a
direct relation between the density of the atom cloud and the absorption

d(x, z) = − 1

σ0
log

(
I(x, z)

I0

)

(4.4)

which can be obtained from the absorption image.

For the probe beam we will build an additional laser which will be tuned to the closed
F = 2 → F ′′ = 3 transition to ensure a strong signal while it has to be driven at an
intensity below saturation which is for π-polarized light Isat = 2.504mW/cm2 with the
resonant cross section σ0 = 1.937 795× 10−9 cm2 [92, 96].
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4.2. Master-Slave laser setup

In order to have enough power in our laser beams a master-slave system with injection
locking as described in section 4.2.4 is the choice for our setup (see fig. 4.4). The master
laser beam is sent through an 30 dB optical isolator7 and a rotatable half-wave plate
(λ/2) before it hits a polarizing beam splitter (PBS) where it gets partially reflected.
The particular intensities of the reflected and the transmitted beams depend on the
angle of the half-wave plate and can therefore be set by hand.

The reflected light is sent through a Rb vapour cell8 and is retro-reflected. For Doppler-
free saturated absorption spectroscopy (sec.4.2.1) it is detected by a fast photodiode
(PD) (sec.4.2.2). Here the locking process takes place which is illustrated in section
4.2.2.

The frequency of the transmitted light is increased by 210MHz using the acousto-optic
modulator AOM 1 (section 4.2.3) and then sent right into the slave laser to induce
injection locking (section 4.2.4). The slave laser, which is now operating at the same
frequency as the frequency stabilized injected light, is sent through another optical
isolator9 and can be partially used for the MOT and after decreasing the frequency by
265MHz in AOM 2 for optical pumping.

4.2.1. Doppler-free saturated absorption spectroscopy

Usually, the hyperfine structure of 87Rb is not resolvable due to Doppler broadening
of spectral lines which results from the thermal motion of the atoms. The resonance
frequency ν0 of an atom which moves towards the probe beam with velocity v is blue
shifted while it shifts to the red when the atom moves in the direction of the laser beam.
The resulting frequency ν is

ν = ν0

(

1 +
v

c

)

. (4.5)

We can assume that the velocities of all atoms in a vapour follow the classical Maxwellian
distribution

n(v)dv = N

√
m

2πkBT
e
− mv2

2kBT dv (4.6)

which is shown in fig. 4.6.

The full-width-at-half-maximum (FWHM) of this distribution for Doppler broadening
is given by

∆νFWHM =
ν0
c

√

8kBT

m
ln 2 = 507MHz (4.7)

7IOT-5-780-VLP - Free-Space Isolator, 780 nm, Ø4.7 mm Max Beam, 1.7 W Max
8Thorlabs, GC25075-RB - Rubidium Pyrex Reference Cell, Ø25 mm x 71.8 mm
9LINOS, FI-780-5SV, 780 nm, Ø5 mm aperture
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4.2. Master-Slave laser setup

To overcome this we perform saturated absorption spectroscopy as illustrated in fig.
4.5. The cross section of the laser beam is doubled by the two lenses L1 and L2 before
it is sent through the Rb vapour cell. The neutral density grey filter with an optical
density (OD) of 0.5 reduces the intensity of the beam each time by a factor of 2

3 such
that after being retro-reflected and sent through the filter again the intensity of the light
beam has been reduced to a factor of 0.1. The high intense incoming beam is called
"pump" beam and the reduced beam is called "probe" beam. This pair of beams is
counter propagating through the vapour cell. The pump beam with the frequency νi
excites most of the atoms that have a velocity of

v =
c(νi − ν0)

νi
(4.8)

such that the lower state is almost empty. Regarding eq. 4.8 and that both beams
are counter propagating the probe signal is not affected as long as v > 0. For v = 0
the gas is nearly transparent for the probe. We therefore receive a sharp dip in the
absorption spectrum which is called Lamb dip, i.e. we are able to measure a Doppler
free spectrum [97–99]. The Doppler free spectrum obtained in our setup via saturated
absorption spectroscopy in a Rb vapour cell is plotted in fig. 4.7.
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Rb
87

F=2
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85
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85
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87
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Figure 4.7.: Doppler free spectrum of Rubidium we obtained via saturated absorption
spectroscopy in a Rb vapour cell.

In addition to the resonances at frequencies ν1, ν2, . . . , νn for v = 0 there are cross-over
resonances which occur at frequencies 1

2(νl + νm) where the transitions according to νl
and νm have the same lower state but two different excited states. With respect to
eq. 4.5 the probe and the pump beam can simultaneously be in resonance to these two
transitions when v 6= 0. [97, 100].

In the experimental setup a function generator10 is used to send a sawtooth voltage
signal to a piezo element inside the laser varying the resonator distance (see fig. 4.12).

10EXAR, XR-2206
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4. Laser system

This causes the frequency of the light to slightly oscillate such that we get a derivative
signal which has steep zero-crossings at the minimum of every Lamb dip and can be
used for the following locking process. The error signal obtained in our setup is shown
in fig. 4.8.

0.005 0.010 0.015 0.020
t [s]

0.004

0.003

0.002

0.001

0.001

0.002

0.003

U [V]

F''=3

co F''=(2,3)
co F''=(1,3)

F''=2

Figure 4.8.: Error signal of 87Rb.

4.2.2. Frequency modulation lock

As we have seen in section 4.1 we need at least three laser frequencies and multiple
beams for laser cooling and detecting 87Rb. One frequency is for cooling and optical
pumping, one is for imaging and one is for repumping. In our case the master laser
and the laser for imaging are homebuilt grating stabilized diode lasers (4.3) and the
repumper is the commercial Toptica DL100 system.

As illustrated in fig. 4.1 the master laser is frequency stabilized to the F = 2 → F ′′ =
(1, 3) cross-over, the laser for imaging operated at the closed F = 2 → F ′′ = 3 transition
and the repumper at the F = 1 → F ′′ = 2 transition. For locking, an error signal is
generated out of the Doppler-free saturated absorption spectroscopy signal as described
above. This signal is very sensitive to small variations of the laser frequency. The scheme
is called frequency modulation (FM) spectroscopy and is fully described in [101].

Technically, we need 2 controllers for FM locking:

1) Pound-Drever driver (PDD)

The Pound-Drever driver (PDD) mainly consists of three elements (see fig. 4.9): A
VCO11, a phase shifter12 and a frequency mixer13. The VCO provides a RF signal
of about 20MHz which is sent directly into the master laser’s RF input to modulate

11Mini-Circuits, JTOS-25+, linear tuning 12.5 to 25MHz
12Mini-Circuits, ADE-1+, LO Power +7dBm, 0.5 to 500MHz
13Mini-Circuits, JSPHS-26, 50Ω, 18 to 26MHz, Phase Range 180°
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4.3. Homebuilt lasers

The laser diode is supplied with current by a homebuilt current control which is illus-
trated in section 4.3.3. It emits light of about 780 nm which is collimated and then sent
to the holographic grating. The laser diode and the grating are in Littrow configuration
so that only the lowest order TEM00 is coupled out. 20-25% of the light is coupled
back into the diode so that the grating and the diode’s rear act as a cavity. One mode
of the light is extracted and enters our setup. The output power of the master laser in
dependence to the applied current is plotted in fig. 4.13.
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Figure 4.13.: Meassured output power of master laser in dependence to applied current.

Adjustment

The adjustment of the laser is crucial and requires some practice. First we need to find
the right vertical position of the grating. The laser is run at a power close to the lasing
threshold and the horizontal angle is displaced such that one can see two reflections
of light on a infrared detection card21 at the laser output. By turning the vertical
adjustment screw both reflections are set to the same height. The horizontal angle can
be changed by rotating the whole mount 3) and with another fine adjustment screw
right behind the piezo element. The current of the diode is set to 40mA right below the
point where the diode starts to lase. If the grating is brought to the right position such
that the beams in the cavity overlap the diode begins to lase even at this low power.
Adjusting the wavelength is done with the piezo screw and by varying the current and
its value is verified by a wavelength meter22 and by the fluorescence signal in the Rb
vapour cell.
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Figure 4.14.: Schematic drawing of the slave laser

4.3.2. Slave Laser

Since the slave laser only has to provide a free running diode the setup is very simple
(fig. 4.14). It only consists of a block for mounting the diode23 and the collimation
tube which is the same as for the master. Again the setup is thermally stabilized with
a QuickCool Peltier element. As mentioned in section 4.1 the wavelengths of the diodes
we used so far have ranges that depend on the building technique. As a consequence
we sometimes have to cool them down a few K. To avoid water condensation it makes
sense to close the whole setup by assembling a glass pane at the outlet and by putting
some drying material inside or by filling the whole case with N2.

Adjustment

Realizing the master-slave injection lock bears some problems. The injected master
beam, which should not have more power then 3mW, has to be overlapped completely
with the beam of the free running slave. Once this is done well enough, the slave takes
over the frequency of the master. This can be observed by the fluorescence light in the
vapour cell and by using again the wavelength meter which has the advantage that it

21Thorlabs VRC5 - IR Detector Card, 700 - 1400 nm
22HighFinesse Angstrom WS Ultimate Precision
23Thorlabs - LD785-SH300 - 785 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
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5
Outlook

In the first part of this work we investigated theoretically the dynamics of ion controlled
atomic Joesphson junctions. Here, we started describing the atom-ion interaction while
introducing quantum defect theory. This was possible due to the fact that the exact
form of the short range interaction does not necessarily need to be known to solve our
problem. We have found that in addition to the spin state of the ion also its motion can
control the tunnelling rate. The next logical step will be to include the micromotion
of the ion in the trap which was neglected so far. This will be part of a subsequent
paper.

To enable an experimental implementation of the ion controlled Josephson junction the
assembling of the experiment has to be completed. When this is done we will first try to
trap ions and atoms while the ions need to be cooled to the ground state. The atoms need
to be trapped in a double well potential, formed by radio frequency induced adiabatic
dressing, and to be cooled close to about 1 µK to realize Bose-Einstein condensation.

Future experiments will aim to optimize the trapping parameters and to realize one-
dimensional Bose-Einstein condensates. This setup may also give us the opportunity to
study many-body phenomena such as self trapping and ion-enabled entanglement and
may also allow to observe the physics in ion-perturbed quantum gases.

A future development will be to optimize the trap design by combining both traps on
one chip. This will further reduce the distance between the atoms and the wires of the
atom chip while increasing the confinement and therefore the trap frequencies. This
enhancement would also exclude possible sources of error like the alignment of both
traps to each other.
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A
Appendices

A.1. Parameters, coordinates and operators used in the

calculations

Symbol Meaning Definition

mi mass of ion

ma mass of atom

ωi secular trap frequency of ion ωi =
γωr

β

ωa trap frequency of atom ωa = ωr
β

Ω trap drive frequency of Paul trap ωi ≈ Ω
2

√

a+ q2

2

q Paul trap q-parameter, or inter-well distance

a Paul trap a-parameter

ri position of the ion ri = R+ r µ
mi

ra position of the atom ra = R− r µ
ma

R centre-of-mass (com) coordinate R = miri+mara
mi+ma

r relative coordinate r = ri − ra

pi momentum of the ion pi = p+ P mi
M

pa momentum of the atom pa = P ma
M -p

P com momentum P = pi + pa

p relative momentum p = mapi−mipa
mi+ma

M total mass M = mi +ma

µ reduced mass µ = mima
mi+ma
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C4 coefficient for charge-induced dipole interaction C4 =
αpe2

2

αp polarizability of the atom

e charge of the ion e = 1.602176565(35) 10−19 C

E∗ energy scale of atom-ion interaction E∗ = ~
2

2µ(R∗)2

R∗ range of atom-ion interaction R∗ =
√

2µC4

~2

α curvature of potential in units E∗ and R∗ α =
(
~ωr
2E∗

)2
=
(
R∗

4lr

)4

αa same but with clamped ion (see text) αa =
(
~ωa
2E∗

)2

ωR com trap frequency ω2
R =

miω
2
i +maω2

a

M = Bω2
r

ωr relative trap frequency ω2
r =

miω
2
a+maω2

i
M

γ ratio between ionic and atomic trap frequency γ = ωi
ωa

β ratio between relative and atomic trap frequency β2 = mi+γ2ma

M

B ratio between com and relative trap frequency B2 = ma+γ2mi

mi+γ2ma

li ionic ground state size li =
√

~

2miωi

la atomic ground state size la =
√

~

2maωa

lR com ground state size lR =
√

~

2MωR
= α−1/4

√
µ

2MB

lr relative ground state size lr =
√

~

2µωR
= α−1/4

√
2

R̂ com position operator R̂ = lR
(
a† + a

)

P̂ com momentum operator P̂ = 1
2ilR

(
a† − a

)
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A.2. Values of E∗ and R∗ for various combinations of atoms and ions

A.2. Values of E
∗ and R

∗ for various combinations of atoms

and ions

Atom Ion Mass ratio mi
ma

E∗/h (kHz) E∗/kB (µK) R∗ (nm) References
6Li 174Yb+ 28.92 178.583 8.57 69.77 [106]

171Yb+ 28.42 178.793 8.58 69.75
138Ba+ 22.93 181.716 8.72 69.46
88Sr+ 14.61 190.459 9.14 68.65
40Ca+ 6.64 220.851 10.60 66.16
24Mg+ 3.99 261.022 12.53 63.45
9Be+ 1.50 463.888 22.26 54.95

7Li 174Yb+ 24.79 132.705 6.37 75.15 [107]
171Yb+ 24.36 132.885 6.38 75.12
138Ba+ 19.66 135.407 6.5 74.77
88Sr+ 12.53 142.967 6.86 73.76
40Ca+ 5.70 169.446 8.13 70.69
24Mg+ 3.42 204.838 9.83 67.41
9Be+ 1.28 387.835 18.61 57.47

23Na 174Yb+ 7.57 14.760 0.708 129.85 [108,109]
171Yb+ 7.44 14.820 0.711 129.72
138Ba+ 6.00 15.674 0.752 127.92
88Sr+ 3.82 18.326 0.879 123.02
40Ca+ 1.74 28.575 1.37 110.09
24Mg+ 1.04 44.169 2.12 98.73

39K 174Yb+ 4.46 3.327 0.160 218.46 [110]
171Yb+ 4.39 3.348 0.161 218.11
138Ba+ 3.54 3.652 0.175 213.42
88Sr+ 2.26 4.625 0.221 201.19
40Ca+ 1.026 8.661 0.415 171.98

40K 174Yb+ 4.35 3.235 0.155 219.24 [111]
171Yb+ 4.27 3.257 0.156 218.88
138Ba+ 3.45 3.559 0.171 214.08
88Sr+ 2.20 4.526 0.217 201.59
40Ca+ 1.00 8.558 0.411 171.92

87Rb 174Yb+ 2.00 0.924 0.044 307.23 [112,113]
171Yb+ 1.97 0.935 0.045 306.33
138Ba+ 1.59 1.092 0.052 294.67
88Sr+ 1.01 1.624 0.078 266.80
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133Cs 174Yb+ 1.31 0.435 0.021 392.67 [114,115]
171Yb+ 1.29 0.442 0.021 391.19
138Ba+ 1.04 0.539 0.026 372.18

172Yb 174Yb+ 1.01 0.917 0.044 252.49 [68]
3He∗ 174Yb+ 57.67 357.285 17.14 69.07 [116]

171Yb+ 57.68 357.499 17.16 69.06
138Ba+ 45.72 360.475 17.30 68.92
88Sr+ 29.14 369.304 17.72 68.51
40Ca+ 13.25 399.283 19.16 67.18
24Mg+ 7.95 437.486 21.00 65.66
9Be+ 2.99 614.929 29.51 60.31

4He∗ 174Yb+ 43.46 205.130 9.84 79.35 [116]
171Yb+ 42.71 205.293 9.85 79.34
138Ba+ 34.45 207.549 9.96 79.12
88Sr+ 21.96 214.262 10.28 78.49
40Ca+ 9.98 237.236 11.39 76.52
24Mg+ 5.99 266.883 12.81 74.30
9Be+ 2.25 408.774 19.61 66.79

24Mg 174Yb+ 7.25 31.284 1.50 87.54 [117]
171Yb+ 7.13 31.417 1.51 87.45
138Ba+ 5.75 33.297 1.60 86.19
88Sr+ 3.67 39.145 1.88 82.77
40Ca+ 1.66 61.868 2.97 73.82
24Mg+ 1.00 96.645 4.64 66.03

40Ca 174Yb+ 4.35 5.553 0.267 167.35 [118]
171Yb+ 4.28 5.590 0.268 167.08
138Ba+ 3.45 6.108 0.293 163.41
88Sr+ 2.20 7.769 0.373 153.87
40Ca+ 1.00 14.687 0.705 131.23

52Cr 174Yb+ 3.35 7.912 0.380 126.37 [112]
171Yb+ 3.29 7.976 0.383 126.12
138Ba+ 2.66 8.891 0.427 122.74
88Sr+ 1.69 11.874 0.570 114.18

88Sr 174Yb+ 1.98 1.563 0.075 235.35 [112]
171Yb+ 1.94 1.581 0.076 234.65
138Ba+ 1.57 1.849 0.089 225.66
88Sr+ 1.00 2.758 0.132 204.18
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A.3. Construction manual for assembling the coils

This manual is based on the procedure of coil manufacturing developed in Prof. Jochim’s
group Ultracold Quantum Gases at the university of Heidelberg and has been adapted
to our setup.

One coil requires the following items:

• Polyamide isolated copper wire (rectangular, 1× 5mm).

• Epotec 353ND epoxy (about 10 g per coil).

• AIT ME7159 (diamond adhesive, about 2 g per coil).

• Indium wire for soldering.

• Kapton Tape

For the production process one requires:

• Winding reel in required dimensions.

• A lathe for winding the wire.

• A small pot to prepare the adhesive.

• A small spatula for covering the wire with adhesive.

• Several clamps to hold and fix the winded coil.

• An oven for the curing process.

• Sandpaper in different grain types to take off the isolation.

• A multimeter to locate shorts.

• Kapton spacer and torque wrench to determine maximum contact pressure

1. Winding and glueing the coil:

Our winding reel has a slit leading from its centre outwards which is used to hold
the wire during the winding process. At the edge the slit slightly bends around the
corner (see fig. A.1). This ensures a round shape of the wound coil. The winding
reel is mounted onto the lathe and one end of the cleaned wire is pushed into the
slit. Now the winding process begins while care has to be taken that the windings
are as tight as possible and that the coil is wound in the correct direction. It turned
out that for this procedure at least three persons are required. One holding the
wire while keeping it under tension, one for rotating the winding reel and one to
cover the coil with adhesive. As can be seen in the second picture of fig. A.1 we
built an additional part for the winding reel that can be screwed on top of the
winding reel for flattening the surface of the coil and to hold it during the winding
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Figure A.1.: Manufacturing a coil.

and the curing process. When the coil is wound and clamped the remaining wire
is cut off and the coil is cured in the oven according to instructions.

2. Prepare the coil:

Since the polyamide isolation of the wire has a low heat conductivity the coil
would heat up to high temperatures which would destroy the coil. To prevent this
the isolation has to be taken off at one side which is done in the workshop (third
picture of fig. A.1). Now it has to be checked if there are any shorts between the
loops using a multimeter (Also measure the resistance of the whole coil). These
can be cured with a thin tip and with sandpaper.

3. Glue heat sink on coil:

It is recommended to use Kapton spacers and a torque wrench to first determine
the maximum contact pressure that can be exerted between the heat sink and the
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Figure A.2.: CAD model of assembled coil.

coil before shorts occur. Right before the glueing it is also recommended to clean
the copper surfaces, because the oxide film reduces the thermal conductivity.

2 g of the diamond adhesive (AIT ME7159) need to be thawed. This expensive
adhesive combines high thermal conduction with electric non-conductivity. First
the coil and the heat sink are prebaked for some time in the oven at 50-60 ◦C.
Then the coil is coated with the diamond adhesive until the copper is no longer
visible (put some more adhesive at the edges). After shortly heating-up the coil
once more at 50-60 ◦C the heat sink is mounted on it. Using the torque wrench
we can precisely control the contact pressure (constantly check for shorts). Now
the adhesive is cured in the oven, starting at 80 ◦C for 1 h, which is increased to
at 100 ◦C for another 1 h and finally at 140 ◦C for 1 h again.

4. Mounting the electric contacts

The electric contacts are soldered at the coil with indium. For this purpose the
coating of the wire has to be sanded off with the sandpaper. The soldering is
done by slowly heating-up the coil to 115-120 ◦C followed by directly coating the
contacts with indium. Kapton tape is used to isolate the contacts from each other
and the heat sink.

5. Testing the coils

For this purpose the electric resistivity of the finished coil is measured and com-
pared to the result from the bare wound wire (see 2.). It also makes sense to
measure the terminal resistance between the contact and the wire and to measure
the electric resistance as function of the coil-temperature.

79



A. Appendices

A.4. Assembling the trap

The ion trap will be glued on top of the atom trap using the UV adhesive: EPO-TEK®
OG142-112 UV Cure Optical Epoxy. The adhesive is carefully applied at the edges of
the ion trap while preventing the adhesive to run between the two traps. Afterwards the
adhesive is cured by illuminating it three times for 10 s with UV laser-light (protection
goggles!).

The electric circuits at the chips are connected to each other using a wire bonder. We
have a gold coated AlN-substrate test-piece from Siegen and a broken ion trap which
I used to test the glueing process and wire bonding for several settings. I chose the
following bonding parameters:

Parameter Bond1 Bond2

Power [mW] 200 350
Time [ms] 200 200
Force [cN] 60 60

Length [µm] 200 200
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A.6. Electronic schemes and technical drawings

Figure A.6.: Self-constructed electronic devices for master-slave laser setup.

Figure A.7.: Master-slave laser setup
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Figure A.8.: Master laser

Figure A.9.: Slave laser
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Figure A.11.: Self-mate board design of Pound-Drever driver
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Figure A.14.: Board design of RF-photodiode amplifier, 10MHz...2GHz [H.Lenk 2010]
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A. Vacuum components

Figure A.16.: Complete design of vacuum setup.
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Figure A.17.: Trap carrier attached to a special CF63 flange with various electrical
feedthroughs.
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Ion source carrier
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Figure A.18.: Ion source carrier
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Figure A.19.: Special CF63 flange for the trap carrier.
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Figure A.20.: Special CF40 flange for the ion source carrier.
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Figure A.22.: Special CF63 Cross and Carriers for the vacuum setup
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A.7. Tables and measurements

Temperature Control: Relation between value displayed and real tempera-

ture.

Temperature (T) [◦C] displayed value (A) ∆T[◦C] ∆A

24.5 1029 5 1

27. 970 5 1

26. 985 5 1

23.5 1067 5 1

22. 1102 5 1

21.5 1140 5 1

21. 1188 5 1

20. 1222 5 1

20. 1240 5 1

19.5 1291 5 1

18.5 1350 5 1

17. 1386 5 1

17. 1411 5 1
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Figure A.23.: Relation between value displayed and real temperature.
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Master laser: relation between applied current and laser power

I [mA] P [mW] ∆I[mA] ∆P [mW]
0 0.0004 1 0.0001
10 0.0011 1 0.0001
20 0.0045 1 0.0001
30 0.0114 1 0.0001
35 0.0233 1 0.0001
40 1.05 1 0.07
45 3.22 1 0.02
50 5.39 1 0.01
55 7.55 1 0.01
60 9.33 1 0.01
65 11.76 1 0.02
70 13.57 1 0.01
75 15.62 1 0.02
80 17.74 1 0.01
85 19.82 1 0.02
90 21.92 1 0.01
95 23.63 1 0.02
100 25.85 1 0.02
101 25.9 1 0.02
102 26.38 1 0.02
103 26.91 1 0.02
104 27.24 1 0.02
105 27.77 1 0.02
106 28.24 1 0.02
107 28.56 1 0.01
108 28.87 1 0.02
109 29.04 1 0.02
110 29.76 1 0.02
111 36. 1 0.1
112 30.4 1 0.1
113 31.3 1 0.1
114 31.3 1 0.1
115 31.9 1 0.1
116 32. 1 0.1
117 32.8 1 0.1
118 33. 1 0.1
119 33.1 1 0.1
120 33.3 1 0.1
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Figure A.24.: Relation between applied current and laser power of master laser.
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A.7. Tables and measurements

Slave laser: relation between applied current and laser power right behind

the optical isolator

I [mA] P [mW] ∆I[mA] ∆P [mW]
0 0 1 0.01
10 0.01 1 0.01
30 0.01 1 0.01
50 0.02 1 0.01
70 0.06 1 0.01
90 1.98 1 0.01
100 10.06 1 0.01
120 24.23 1 0.01
141 38.4 1 0.1
160 51 1 0.1
160 64.1 1 0.1
200 77.2 1 0.1
230 97 1 0.1
260 114.8 1 0.1
290 133.5 1 0.1
320 151.1 1 0.1
350 168.1 1 0.1
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Figure A.25.: Relation between applied current and laser power of slave laser.
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